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Abstract This article is motivated by the need to minimize
the number of elements required to establish a self-reproducing
system. One such system is a self-reproducing extraterrestrial
robotic colony, which reduces the launch payload mass for space
exploration compared to current mission configurations. In this
work, self-reproduction is achieved by the actions of a robot on
available resources. An important consideration for the establishment
of any self-reproducing system is the identification of a seed, for
instance, a set of resources and a set of robots that utilize them
to produce all of the robots in the colony. This article outlines a
novel algorithm to determine an optimal seed for self-reproducing
systems, with application to a self-reproducing extraterrestrial
robotic colony. Optimality is understood as the minimization of a
cost function of the resources and, in this article, the robots. Since
artificial self-reproduction is currently an open problem, the algorithm
is illustrated with a simple robotic self-replicating system from the
literature and with a more complicated self-reproducing example
from nature.
1 Introduction
1.1 Motivation
Current phased approaches to space colonization see the development of an enduring extraterrestrial
robotic presence. Several space agency road maps, of which [17] is typical, suggest that individual
countries will deploy advanced robots as needed to expand the size of an established colony. It is well
known, however, that for every unit mass of payload to be launched into space, 80 additional units
of mass are required to be launched as well [49]—hence, the motivation to endow robots with the
capacity for self-reproduction. These machines would be able to utilize on-site resources to enlarge their
numbers when deemed necessary for a given task. Extraterrestrial systems with such capability are
less dependent than traditional colonies on the fiscal constraints of multiple launches of robots. Self-
reproduction may therefore provide a highly cost-effective solution to the problem of establishing
extraterrestrial colonies.

To minimize the payload mass for this kind of self-reproducing robotic system, it would be even
more efficient to identify the required elements for the initiation of the system and send the smallest
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number of these elements into space. Indeed, this practical need to minimize the number of elements
required for system establishment is important for any self-reproducing system, and is especially im-
portant for large self-reproducing systems with the capacity to evolve and adapt while using fixed,
unchangeable reproduction rules (see [33] for examples of these systems). References [31] and [32]
provide algorithms that identify a seed for various classes of self-reproducing systems. This work builds on
these results by providing a seeding algorithm that is applicable to a more general class of self-reproducing
systems. The proposed algorithm identifies a minimal seed, and is more generally applicable because
it is able to seed self-reproducing systems where a progenitor uses some of its progeny as resource to
self-reproduce. Such systems are prevalent; examples include the Krebs cycle in a cell [30], the atmo-
spheric ozone cycle with and without attack by chlorine [24], and the nitrogen cycle when starting a new
aquarium [1]. We cite natural examples instead of robotic examples here because (1) there are few
instances of robotic self-reproduction in the literature, due to the difficulties posed by unstructured
environments [6], and (2) it is anticipated that engineered self-reproducing systems will resemble those
found in nature. Hence, the goal of this article is the development of an algorithm that is capable of
optimally seeding self-reproducing systems, including those where the self-reproduction of a parent uses
its offspring as a resource.

1.2 Literature on Self-Reproducing Systems
The seminal work of John von Neumann [47] prompted the extensive study of self-reproducing
systems, including cellular automata, computer programs, kinematic machines, molecular machines,
and robotic colonies. A comprehensive overview of this field is documented in [19, 40]. In a land-
mark conceptual study on a self-replicating lunar factory [18], a system that included paving, mining,
casting, and mobile assembly and repair robots was proposed. Inspired by this work, Chirikjian et al.
[7] suggested a factory system composed of self-replicating multifunctional robots that could mine
and transport materials and components within a lunar manufacturing facility. The work also demon-
strated the feasibility of a self-replicating robot with a prototype made of LEGO Mindstorms com-
ponents. At the same time (and in the years since), a number of researchers have developed modular
self-replicating, self-assembling, and/or self-reconfigurable robots (see, e.g., [5, 8, 20–23, 26, 27, 29,
36, 38, 45, 50, 53]). A current survey of the state of the art and the challenges facing modular, self-
reconfigurable robot systems is given in the Grand Challenges of Robotics article [51] and in [35,
41]. Other reviews are also available [10, 16, 37].

As the references above and those therein indicate, the focus has shifted to provable control of the
modules of a single self-reconfigurable robot—the realization of various topologies [21], efficient and
distributed control of a large number of modules [3, 48], recovery from module failures [52], and even
module self-repair [9, 42]. Approaches for local control include reinforcement learning [46], cellular
automata [4], and hormone-inspired swarming for self-organization [39]. This shift in focus to local
control is due, in part, to the difficulty of achieving artificial-system self-reproduction in unstructured
environments [6].

By virtue of the harsh environment an extraterrestrial robotic colony operates in, self-reproducing
robots need to learn, adapt, and possibly evolve to be tolerant of external disturbances that can affect
the collectiveʼs overall goals (see [33]). Recently [34], we examined the performance of a system con-
sisting of multiple mining and ore-processing robots, where each individual robot is also capable of
self-reproduction. It is such a system of multiple self-reproducing robots, modeled at a conceptual
level, that is under consideration in this work.

1.3 Outline of This Article
Section 2 highlights a theory of self-reproducing systems, discusses what makes the general seeding
problem difficult, and presents relevant results of limited solutions to seeding available in the literature.
Section 3 details the necessary definitions and assumptions for seed identification, outlines a seed iden-
tification (SI) algorithm, and analyzes its properties. Section 4 illustrates the application of the algorithm
to self-replicating systems documented in the literature. Section 5 presents conclusions.
28 Artificial Life Volume 18, Number 1
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2 Background
2.1 Highlights of Generation Theory
The theoretical framework of this article is generation theory [28], which formalizes self-reproduction
by machines, a term describing any entity that is capable of producing an offspring, regardless of its
physical nature. A robot, a bacterium, or even a piece of software code is considered to be a machine
in this theory if it can produce another robot, another bacterium, or some lines of code, respectively.
These machines utilize resources to self-reproduce. A selected resource is manipulated by the parent
machine via an embedded generation action to produce an outcome, which itself may or may not be
a machine. Thus, we can state the following:

Definition 1. A generation system is a quadruple Γ = (U, M, R, G) where:
• U is a universal set that contains machines, resources, and outcomes of attempts at
self-reproduction that are neither machines nor resources.

• M ⊆ U is a set of machines, |M| ≥ 1.

• R ⊆ U is a set of resources that can each be utilized for self-reproduction. Each resource
is an ordered list of elements. A resource ordered list can include machines and elements
of other resource ordered lists.

• G : M × R → U is a generation function that maps a machine and a resource ordered list
into an outcome in the universal set.
When a machine x ∈ M processes a resource ordered list r ∈ R to generate an outcome y ∈ U,
we write

y ¼ Gðx; rÞ: ð1Þ

In (1), we say that “x is capable of generating y,” and we call the process reproduction. If we have x =
G(x, r ), then we say that “x is capable of generating itself,” and we call the process replication.

We also make use of concepts from graph theory [13]. Equation (1) may be represented by a
directed reproduction graph, g, as shown in Figure 1. In this diagram, the machine x and the outcome
y are vertices, the resource ordered list r is an edge, and the direction of the edge indicates that it is
the machine x that uses the resource ordered list r to generate the outcome y.

Definition 2. The directed-graph representation of a generation system Γ = (U, M, R, G) is the directed
supergraph containing all directed reproduction graphs that produce outcomes in M.

A sample directed graph representation of a generation system is depicted in Figure 2.
Let (rA) = r1, r2,… , rA be a sequence of A resource ordered lists from R. We define the notation

Gðx; ðrAÞÞ :¼ Gð…GðGðx; r1Þ; r2Þ…; rAÞ ð2Þ
Figure 1. An example of a directed reproduction graph, which indicates that the machine x is capable of generating the
outcome y using the resource ordered list r, that is, y = G(x, r).
Artificial Life Volume 18, Number 1 29
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to denote the outcome of generation using the sequence (rA)—see Figure 3. This notation assumes
that the intermediate outcomes of generation, G(x, r1), G(G(x, r1), r2),… , G(…G(G(x, r1), r2)… , rA−1),
are all machines. The sequence of machines thus generated is called the lineage of x through the se-
quence (rA). In the trivial case where A = 0, we define G(x, (r0)) = x, that is, a sequence of resource
ordered lists of length zero yields a replication.

Definition 3. A generation subsystem of a generation system Γ = (U, M, R, G) is a quadruple Γ1 =
(U1, M1, R1, G|M1×R1

) such that

(1) U1 ⊆ U, M1 ⊆ M, R1 ⊆ R, and

(2) Γ1 = (U1, M1, R1, G|M1×R1
) is itself a generation system.

An example of a generation subsystem of the generation system in Figure 2 is specified by Γ1 =
(U1, M1, R1, G|M1×R1

) where U1 = M1 ∪ R1, M1 := {x5, x6, x9}, R1 := {r5, r8}, and G|M1×R1
states

that x6 = G(x5, r5) and x9 = G(x6, r8). The machine sequence x6, x9 is the lineage of x5 through the
resource-ordered-list sequence r5, r8.

We formally define a seed in Section 3. Intuitively, since self-reproduction is achieved by the actions
of a machine on available resource ordered lists, a seed for a self-reproducing system consists of a set of
machines and a set of resource ordered lists such that all of the machines in the generation system
are produced from a seed machine processing a finite sequence of seed resource ordered lists.

Current state-of-the-art self-reproducing systems are relatively simple, due to the nascent stage of
the technology, and present-day generation systems can either be built with good seeds or be re-
engineered when better seeds are desired. Yet, large and complex self-reproducing systems are envi-
sioned for the future—systems that have the capacity to evolve and adapt to changing environmental
conditions [33]. It is anticipated that design engineers will take advantage of this evolutionary capability
30 Artificial Life Volume 18, Number 1
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Figure 3. The directed-graph representation of a generation system where machine x initiates generation using the firs
resource ordered list of a sequence of A resource ordered lists, (rA). The intermediate machine outcomes sequentially
utilize resource ordered lists from (rA) to finally generate the machine G(x, (rA)).
Figure 2. An example of a directed-graph representation of a generation system, where M = {x1, x2, x3, x4, x5, x6, x7, x8, x9}
and R = {r1, r2, r3, r4, r5, r6, r7, r8, r9}. All directed reproduction graphs for this generation system that produce outcomes in
M are shown.
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to evolve an appropriate configuration or functionality for a generation system prior to its deployment
in an initial environment. This evolved generation system may include unnecessary or unexpected
intermediate machines and resource ordered lists that are a by-product of evolution. Because the evo-
lution of a generation system depends on the time-history of the experienced environmental condi-
tions, which are always variable, an initially good seed may no longer be suitable or feasible for
deployment, a better albeit unknown seed may exist, and re-engineering for seed suitability may be
impossible due to the inherent variability in the evolutionary engineering process. Hence, a seed for
the large, evolved generation system will have to be determined, and the method in this work is a
precursor to more advanced techniques for seeding evolving generation systems.
2.2 Difficulty of the Seeding Problem
Many factors contribute to the inherent difficulty of seeding, including:

(a) The possibility that a given generation system is made up of multiple, disjoint generation
subsystems, each with a different seed. Alternatively, there could be multiple, intersecting
generation subsystems, with some common seed elements in each subsystem. Any seeding
algorithm would have to be able to deal with both possibilities without any a priori
knowledge about the generation system.

(b) The potential for generation cycles (sequences of generations resulting in the production
of a machine identical to itself after n generations) within a given self-reproducing system.
If these cycles exist, then one naturally wonders which of the machines in a particular
cycle, if any, should belong to the seed. Consideration of machine and resource cost,
and the consequences of (e), is required.

(c) The fact that degenerate machines (machines whose progeny will eventually no longer be
machines; see [28]) should not belong to the seed for a self-reproducing system. On the
other hand, if all the machines in the generation system are degenerate, then there is a
need to identify a least-degenerate machine to seed the system.

(d) The complexity of the resource set. A consistent theme in the literature is that a machine
operates on an ordered list of elements constituting a resource. This list can include
duplicates of elements contained in another resource that is also an ordered list, that is,
an element can belong to more than one resource list.

(e) The existence of self-reproducing systems where the generation of a copy of a machine
depends on the assistance of its offspring. Typically, this phenomenon manifests itself as
a combination of (b) and (d), when a resource ordered list employed at some stage of
a generation cycle contains a machine that is generated at a different stage in the cycle.
It is not always clear whether to take the progenitor, its offspring, neither one, or both to
belong to the seed.

It is perhaps because of all of these factors that the seeding problem is still mostly open. The only
known works in this area are our previous attempts at tackling restricted versions of this problem.
Reference [31] resulted in the seed identification and generation analysis (SIGA) algorithm, and [32]
presented a restricted seed identification (RSI) algorithm that is applicable to a larger class of self-
reproducing systems than [31].
2.3 Relevant Seeding Literature and Definitions

2.3.1 The SIGA Algorithm
In [31], we allowed each resource to be an ordered list of physical elements that could include
machines. We therefore defined a containment relation as follows.
Artificial Life Volume 18, Number 1 31
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Definition 4. If machine xi belongs to a resource ordered list rj, then we say that xi is contained in
rj, and we write xi ≺ rj, where ≺ is the containment relation. We can equivalently say that rj contains xi,
and we write this as rj ≻ xi.

We assumed that if a machine x was contained in the resource ordered list r (x ≺ r ), then the
ordered sublist of the elements of r that did not contain the machine x was also a resource ordered
list, that is, r\x ∈ R. We also assumed that there existed a machine in the generation system that was
capable of producing any machine in the system after A generations. The idea of the algorithm was to
remove all degenerate machines from the sets M and R, select one of the remaining nondegenerate
machines to be a seed machine, and select the set R\M to be the resource seed set. In short, of the
difficulties listed in Section 2.2, (c) was effectively handled, (b) and (d) were ineffectively handled, and
(a) and (e) were not handled.

2.3.2 The RSI Algorithm
Reference [32] took a more general approach to the seeding problem, also presenting necessary and
sufficient conditions to find an optimal seed for a larger class of generation systems. It developed an
algorithm based on the following definition.

Definition 5. The generation system Γ = (U,M, R, G) is strongly regular if, whenever y = G(x, (rA)),
where x and y are machines and (rA) is a sequence of A resource ordered lists, we have y ⊀ r for
all ordered lists r that constitute the sequence (rA).

Thus, in a strongly regular generation system, if a machine is contained in a resource ordered list,
then that resource ordered list cannot be utilized in any sequence of resource ordered lists used to
generate the machine (Figure 4). The idea of the RSI algorithm was to separately seed specific subsets
of the generation system. Of the difficulties listed in Section 2.2, (b) and (c) were effectively handled,
(a) and (d) were ineffectively handled, and (e) was not handled. Determining whether a given genera-
tion system was strongly regular became an added difficulty.
2.4 SI Algorithm Overview
The algorithm in this article is similar to the RSI algorithm, and is inspired by genealogy. It first de-
termines the progeny of each machine in a given generation system, picks a machine with the largest
number of descendants, examines that machineʼs family tree to find a seed with minimum cost that
generates the descendants, and iterates until all machines in the generation system are considered. The
new algorithm effectively handles difficulties (b), (c), (d), and (e) in Section 2.2, and partially handles
difficulty (a).
3 Seed Identification

This section formulates a seed identification problem and presents an extended version of the RSI
algorithm, the SI algorithm, to solve this problem.
Figure 4. As these directed-graph representations show, a resource ordered list that contains a machine cannot con-
stitute a sequence of resource ordered lists used to generate that machine in a strongly regular generation system.
32 Artificial Life Volume 18, Number 1
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3.1 Preliminaries
We define a seed as follows.

Definition 6. Let Γ = (U, M, R, G) be a generation system, and let r ≥ 1 be a natural number. A
seed of order rA for Γ is a set

S ¼ MS ∪ RS; ð3Þ

where

MS ¼ x1; x2;… ; xr; MS ⊆ M; ð4Þ

and

RS ¼ r1; r2;… ; rA; RS ⊆ R; ð5Þ

such that ∀y1∈M, 9A1 <∞, 9r1∈ RS, r2∈ RS,… , rA1 ∈ RS (i.e., a sequence of A1 resource ordered lists
(rA1) where each resource ordered list is an element of RS), and 9y0 ∈ MS such that G( y0, (rA1)) = y1.

That is, a seed for a generation system consists of r machines and A resource ordered lists such
that all of the machines in the generation system can be produced from a seed machine processing a
finite sequence of seed resource ordered lists. We allow MS ∩ RS = ;.

We can also relax the notion of strong regularity.

Definition 7. The generation system Γ = (U, M, R, G) is weakly regular if whenever y = G(x, r ),
where x and y are machines and r is a resource ordered list, we have y ⊀ r.

Thus, in a weakly regular generation system, no machine can be contained in any resource or-
dered list used to produce that machine (Figure 5). The difference between strong regularity and
weak regularity lies in the location and number of resource ordered lists where offspring contain-
ment is allowed. In a strongly regular generation system, containment of an offspring machine is not
permitted in any resource ordered list constituting a sequence of resource ordered lists used to gen-
erate that machine. In a weakly regular generation system, containment of an offspring machine is
permitted in any resource ordered list constituting a sequence of resource ordered lists used to gen-
erate intermediate machines, as long as the containment does not occur with the resource ordered
list that helps immediately generate the considered offspring machine. It is important to note this
distinction and identify how to seed such self-reproducing systems, because we find weakly regular
generation systems in nature [1, 24, 30].

An easy consequence is the following.

Theorem 1. Strong regularity is a sufficient condition for weak regularity.

Proof. See Appendix. □
Artificial Life Volume 18, Number 1 33
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Remark 1. The converse is not true.

A formalization of a common genealogical concept is the following, which specifies that two
machines that have a common ancestor are kin.

Definition 8. A family of a generation system Γ = (U,M, R, G) is a generation subsystem Γ1 = (U1,
M1, R1, G|M1×R1

) where, ∀(x, y) ∈ M1 × M1, 9z ∈ M1, 9(rn) with n ≥ 0 and r ∈ R1 for all r constitut-
ing (rn), and 9(rm) with m ≥ 0 and r ∈ R1 for all r constituting (rm) such that x = G(z, (rn)) and y = G(z,
(rm)). A subfamily is a subset of a family Γ1 = (U1, M1, R1, G|M1×R1

) that is itself a family.

Remark 2. A lineage is a subfamily.

It is easy to show that the notion of a family is related to the notion of a connected subgraph
as follows.

Theorem 2. The directed-graph representation of a family is weakly connected.

Proof. See Appendix. □

However, the two notions of family and connected subgraph are distinct because the definition
of the former explicitly specifies the existence of a common ancestor, but the definition of the latter
does not explicitly specify reachability to a common vertex.

We can assign another genealogical term to an ancestor at the “head” of a family.

Definition 9. A matriarch of a family Γ1 = (U1, M1, R1, G|M1×R1
) is an element x♀ ∈ M1

such that ∀x ∈ M1, x 6¼ x♀, 9(rA) selected from the resource ordered lists of R1 such that G(x♀,
(rA)) = x.

This definition leads intuitively to the following theorem, which is not trivial to prove.

Theorem 3. Every family has a matriarch.

Proof. See Appendix. □
3.2 Assumptions
We list the basic assumptions of our approach to seeding a given generation system.

Assumption 1. M and R are finite sets.

Assumption 2. For each r ∈ R, an inexhaustible supply is available.

For a lunar robotic colony, this statement makes the dependence on in situ resources explicit and
assumes that the extraterrestrial store of resources will not run out. This assumption is consistent
with generation theory, which does not specify quantities of resources or machines.

Assumption 3. All the machines in the generation system must be produced, although they need
not all belong to a seed.

That is, a generation system is specified a priori, and it is this entire system that must be seeded.
One reason for why an entire system must be seeded is the possibility that one or more machines are
necessary for the primary (non-self-reproductive) functions of the system. Another reason is that the
34 Artificial Life Volume 18, Number 1
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given generation system will typically include intermediate machines that are needed to facilitate the
self-reproduction or self-replication steps of other machines.

Assumption 4. If a machine x is contained in a resource ordered list r (x ≺ r ), then the ordered
sublist of the elements of r that does not contain the machine x is also a resource ordered list, that
is, r\x ∈ R.

This assumption is the same as one employed by the SIGA algorithm. It states that the usefulness
of available physical resource elements (located, e.g., on an extraterrestrial planet) remains un-
changed in the absence of artificial self-reproducing entities.

Using the relaxed notion of weak regularity, we now make an assumption about the structure of
the given generation system that is less restrictive than similar assumptions made by all other seeding
approaches. In nature, it is not possible for a progenitor to cannibalize an offspring to produce that
same offspring, and it would be impractical to require this capacity in an artificial self-reproducing
system. However, cannibalization of offspring to produce other offspring has, in general, been docu-
mented, which contradicts an assumption of strong regularity in previous seeding approaches. We
also note that families, as defined above, are disjoint in nature.

Assumption 5. We assume that the generation system to be seeded, Γ = (U, M, R, G), is weakly
regular and made up of one or more disjoint families.

Finally, we assume knowledge of the cost of the machines and resources in the self-reproducing
system. For instance, in situ resources may be less expensive than resources that need to be launched
with the seed machines of the lunar robotic colony.

Assumption 6. The function J : M → R representing the cost of machines, and the function K :
R → R representing the cost of resource ordered lists, are both provided. Let K(r\x ) ≤ K(r ).

The functions J and K are time-independent; indeed, the amount of time that is required for self-
reproduction is not accounted for by the method in this article. We leave the recognition and com-
pensation for time constraints during seeding, which may correspondingly affect seed cost as well as
the individual costs of machines and resource ordered lists, to future endeavors.
3.3 Seed Identification Problem
The problem tackled in this article is the minimization, under Assumptions 1 through 6, of the
total cost of the machines and resource ordered lists in a seed when the given generation func-
tion is used. We explain this problem with the example directed-graph representation of a family
in Figure 6.
Figure 6. Directed-graph representation of a family to illustrate that seed cost cannot be minimized solely by examining the
cost of the elements of a seed set. If r2 costs less than r1, then a seed resource set of {r1, r2, r3} may be less expensive than a
seed resource set of {r1, r3}, because a portion of the more costly r1 in the latter set can be replaced by r2.
Artificial Life Volume 18, Number 1 35
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In Figure 6, let the cost of the resource ordered list r2 be less than the cost of the resource
ordered list r1. Intuitively, there are two seeds for this example:

(1) {x1} ∪ {r1, r3}, and

(2) {x1} ∪ {r1, r2, r3}.

Although the first seed has a resource seed set with lower cardinality than the second seed, the
first seed is nonoptimal. This is because r1, which is more expensive than r2, must be utilized by x1 to
generate x2 with the first seed. It is less costly if x1 utilizes r2 to produce x2. The resource ordered list
r1 is required to generate x4 in both seeds; however, a less expensive amount of r1 and r2 is required
in the second seed than the total amount of r1 in the first seed. Therefore, optimality of the seed set
cannot be determined solely by examining the cost of the elements of the set. The effect of the
generation function must be considered as well.

More specifically, if there exist two sequences of resource ordered lists, (rm) and (rn), where each se-
quence possesses a common resource r∈ R, and if y = G(x, (rm)) and z = G(x, (rn)) in the given genera-
tion system to be seeded, then a solution to the seed identification problem will charge the cost of r twice.

3.4 Approach to Seed Identification
The idea behind the SI algorithm is that seeding the whole generation system may be accomplished by
seeding each individual family. To seed by family, we need to determine all the descendants of a particular
machine. This is facilitated by the notion of a generation subsystem of a machine, which is a subfamily.

Definition 10. The generation subsystem of machine x1 is the generation system Γx1 = (U,Mx1, Rx1,G|Mx1
×Rx1

)
where

Mx1 ¼∪
∞

i¼0

Mi
x1; ð6Þ

Mi
x1 ¼ x ∈ Mj 9ðriÞ from R : x ¼ Gðx1; ðriÞÞ; ð7Þ

Rx1 ¼∪
∞

i¼0

Ri
x1 ; ð8Þ

Ri
x1 ¼∪

jRji
ðriÞ from R j Gðx1; ðriÞÞ∈M: ð9Þ

In Definition 10,Mx1
i is the set of all the descendants of x1 produced after i generations,Mx1 is the

set of all the descendants of x1, Rx1
i is the set of all resource-ordered-list sequences of length i that

would produce a descendant of x1, and Rx1 is the set of all resource-ordered-list sequences that
would produce a descendant of x1. Hence, the generation subsystem of x1 is the largest family
for which x1 is a matriarch. Although M and R are finite, the infinite unions refer to the possibly
infinite number of descendants produced by a matriarch.

We determine the subsystems for which there exists one machine capable of generating all other
machines in the subsystem. It is among these subsystems that one may find a matriarch of a family.
Consequently, individually seeding each of these subsystems of matriarchs seeds the whole family.
Let M♀ denote the set of matriarchs.

In the generation subsystem of a matriarch x♀, every machine in the subsystem can be produced
except possibly x♀ itself. Thus, in the course of seeding the subsystem of x♀, the machines to pick
for the seed set of the subsystem, Sx♀, are x♀ and certain machines contained in Rx♀.
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The next theorem suggests an approach to seeding weakly regular generation systems, and re-
places the sufficient condition for minimizing |MS| that was used by the RSI algorithm in [32].

Theorem 4. Assume that the generation subsystem of the machine x1, Γx1 ¼ ðU;Mx1 ;Rx1 ;GjMx1�Rx1
Þ, is

weakly regular. Consider a single lineage in Γx1. Let y ∈ Mx1, and (rm+1) be a sequence of resource ordered lists such
that G(x1, (rm+1)) = y, that is, y belongs to the lineage of x1 through (rm+1). Suppose that:

(1) ∀i : 1 ≤ i ≤ m, xi+1 = G(x1, (ri)) 6¼ y.

(2) G(xm+1, rm+1) = G(x1, (rm+1)) = y.

(3) 9r constituting (rm) : y ≺ r.

(4) m is the smallest natural number for which assumptions (1)–(3) hold.

Then a seed set for the weakly regular subfamily (U, X, Z, G|X×Z), where X is the set of machines of (xm+1) and
Z is the set of resource ordered lists of (rm), is S = {x1, y} ∪ Z\Mx1 , and S has minimum |MS|.

Proof. See Appendix. □

Theorem 4 states that if a sequence of m resource ordered lists, (rm), is used to produce a se-
quence of m + 1 machines, (xm+1), and the machine y is contained in a resource ordered list belong-
ing to the sequence (rm) but does not itself belong to the sequence (xm+1), and the resource seed set
is devoid of machines, then the machine seed set must consist of y and the first machine in (xm+1).
We call y an irregular machine.

For instance, consider the weakly regular generation system of Figure 4a and Figure 5b. Let
m = 1 and y = x3. Since the assumptions of Theorem 4 hold, a seed set for the generation system is
S = {x1, x3} ∪ {r1\x3, r2}, which is rather intuitive.

As a result of Theorem 4, we can examine the sequences of machines generated by a matriarch
when seeding weakly regular generation systems. We first present a lineage seeding (LS) subalgorithm,
before giving the general SI algorithm.
3.5 The LS Subalgorithm
Algorithm 1. Lineage seeding.

Input: a lineage of a matriarch, x1, through (rn).

Output: a seed set S = MS ∪ RS for this lineage, where

MS ¼ x1 ∪ fall irregular machinesg;

RS ¼ fðrnÞg\Mx1 :

1: MS ← {x1}.

2: initialize a linked list, L, with one element, x1.

3: for 1 ≤ i ≤ n do

4: let y ← G(x1, (ri)).

5: if y is not in L then

6: for each machine in {(ri)}\{x1, y} that is not in L do
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7: add the machine to the tail of L.

8: end for

9: add y to the tail of L.

10: else

11: insert machines that are contained in {(ri)}\{x1, y} that are not already in L into list
positions that immediately precede y.

12: if G(x1, (rj)), 1 ≤ j < i, and all contained machines in {(ri)}\{x1, y} have positions in L that
are not between the positions of x1 and y then

13: y is an irregular machine. MS ← MS ∪ { y}.

14: end if

15: end if

16: end for

17: RS ← {(rn)}\Mx1.

18: S ← MS ∪ RS.

At each iteration of Algorithm 1, the LS subalgorithm, the number of machines of the lineage
that have been examined grows by one. If the lineage at that iteration is not strongly regular, then
Theorem 4 comes into play. The linked list L that is utilized by the LS subalgorithm is a tool to
indicate which machines should be added to the machine seed set.

Theorem 5. The LS subalgorithm is correct. That is, the output of the LS subalgorithm is a seed for a lineage of
a matriarch, x1, through (rn).

Proof. See Appendix. □
3.6 The SI Algorithm
In lines 1 through 3 of Algorithm 2, the SI algorithm, each machine (vertex) is a starting point (root)
in the initial generation system (directed graph), and we need to find the generation subsystem of
that machine (maximally connected subgraph that can be reached from the root). Two well-known
algorithms to compute the reachable components in a graph are the breadth-first search (BFS) and
the depth-first search (DFS) algorithms [2, 12, 25].

In lines 4 and 21 of Algorithm 2, the idea is to seed a primary generation subsystem first, and
then go back to a secondary generation subsystem M\Mxi and partition and seed iteratively.

In lines 5 through 19 of Algorithm 2, we ensure that the primary generation subsystem has the
property that each offspring is generated from only one resource ordered list. Thereafter, we can
select all resource ordered lists to be a part of the seed set. We use the Chu-Liu-Edmonds algorithm
[15, 44] to find a directed minimum spanning tree (DMST) for each matriarch in the primary gen-
eration subsystem (i.e., we find a family tree). For each of these DMSTs, we can apply the DFS
algorithm to find all the simple paths that begin at the root and utilize the LS subalgorithm to seed
each path. The seed for the entire subsystem for a particular DMST is the union of the seeds for
each path. We pick the seed with minimum cost.

Algorithm 2. Seed identification.

Input: a weakly regular generation system of n machines and m resource ordered lists that is made
up of one or more disjoint families, and cost functions J : M → R and K : R → R.
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Output: a seed set, S, for this generation system.

1: for all xi ∈ M, 1 ≤ i ≤ n do

2: determine Γxi.

3: end for

4: select the Γxi where |Mxi| ≥ |Mxj|, ∀1 ≤ j ≤ n. This Γxi is the largest generation subsystem.

5: for all the matriarchs of the largest generation subsystem do

6: if in the graph representation Gxi of Γxi , xi has entering edges then

7: add a new vertex xi′.

8: change these entering edges so that they now enter xi′.

9: end if

10: label each edge r of Gxi with the cost of the resource represented by that edge, K(r). For each edge
r that exits a vertex y, add the cost of the machine represented by that vertex, J( y), to the cost K(r ).

11: find a directed minimum spanning tree (DMST) in Gxi , the graph of Γxi with root at xi.

12: Gximin ← this DMST of Γxi.

13: for all simple paths in Gximin do

14: use the LS subalgorithm to seed each path and obtain Spathj.

15: end for

16: Sxi ←∪j Spathj. Let Sxi be the union of a machine set,MSxi , and a set of resource ordered lists, RSxi .

17: Jxi ← the cost of Gximin − the cost of nonirregular machines removed by the LS subalgorithm.

18: end for

19: select the Sxi for which Jxi is a minimum.

20: add xi to the set of matriarchs, M♀.

21: remove all x ∈ Mxi from M.

22: if M 6¼ ; then

23: go to Line 4.

24: else

25: S ←∪xi ∈ M♀ Sxi.

26: end if
3.7 Properties of the SI Algorithm
Theorem 6. The SI algorithm is correct. That is, the output of the algorithm is an optimal seed for the given
generation system.

Proof. See Appendix. □

Remark 3. The assumption of disjoint families in Assumption 5 is one requisite for optimality of the seed
using the SI algorithm. Although the proposed algorithm will work if the given generation system has
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families that are not disjoint, the resultant seed may or may not be optimal (i.e., no claims about optimality
can be asserted). However, we conjecture that the resultant seed will be “close” to optimal. Hence our
statement at the start of Section 3 about partially handling difficulty (a) in Section 2.2. If the given genera-
tion system does not possess disjoint families, then line 20 of the SI algorithm should read “go to line 1.”

Theorem 7. The SI algorithm is complete. That is, the algorithm will output a seed if one exists for the given
generation system.

Proof. See Appendix. □

Theorem 8. The SI algorithm is guaranteed to stop after a finite number of iterations. The time complexity for
the operation of this algorithm is polynomial in |M| and |R|.

Proof. See Appendix. □
4 Example Applications of the SI Algorithm

Two examples are provided in this section. The first example serves to illustrate the broad workings
of the SI algorithm by rendering the LS subalgorithm trivial. The second example illustrates the
details of the LS subalgorithm and its relationship with the SI algorithm.
4.1 A Strongly Regular Self-Replicating System
We can use generation theory and the algorithm in this article to analyze a modified version of the
semi-autonomous replicating system designed by Chirikjian et al. [7, 43]. This self-replicating LEGO Mind-
storms system was one of the first working models of a multifunctional self-reproducing robot that
could constitute a lunar robotic colony. The semi-autonomous replication process of the Suthakorn-
Kwon-Chirikjian robot required the progenitor robot to commute along painted lines between
stations to maneuver and assemble LEGO Mindstorms kit components together (see [7] for il-
lustrations). Each station facilitated a replica robot assembly task, for example, controller-chassis
assembly, motor and track assembly, or gripper assembly.

In the original design, we can take M to be the set of all entities that are each made up of two or
more LEGO Mindstorms kit components fixed together in some way. Let

M :¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9g ð10Þ

and

R :¼ fr1; r2; r3; r4; r5; r6; r7; r8; r9g; ð11Þ

where we define each of the constituent machines and resource ordered lists in the manner that
follows. The sequence of generation steps is also outlined:

x1 := prototype robot,

r1 := [conveyor-belt/sensor unit; docking unit; electrical connector; central controller unit (CCU);
electrical cable],

x2 := chassis assembly station,

x2 = G(x1, r1),

r2 := [chassis],
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x3 := chassis aligned in assembly position,

x3 = G(x1, r2),

r3 := [robot control system (RCX); x3],

x4 := RCX-chassis assembly,

x4 = G(x2, r3),

r4 := gripper assembly/disassembly station := [CCU; electrical connector; ramp and lift system;
gripper],

x5 := prototype robot with gripper,

x5 = G(x1, r4),

x1 = G(x5, r4),

r5 := [left LEGO hook; right LEGO hook; CCU; electrical connector; stationary docking sensor;
motorized pulley unit],

x6 := motor and track assembly station,

x6 = G(x5, r5),

r6 := [left LEGO track; right LEGO track],

x7 := tracks aligned onto hooks,

x7 = G(x1, r6),

r7 := [motor/sensor unit; x4],

x8 := RCX-chassis-motor assembly, moved to position,

x8 = G(x1, r7),

r8 := [x7; x8],

x9 := prototype robot on hooks,

x9 = G(x6, r8),

r9 := [x9],

x1 = G(x1, r9).
The original Suthakorn-Kwon-Chirikjian generation system is a single family, and so the SI algorithm
terminates after one iteration. If we take into account the necessity of batteries for operation, the
application becomes nontrivial. We stipulate that the robot controller (RCX) runs on charged batteries,
and that there is a battery charger running on a supply of readily available electricity that can charge
uncharged batteries. Thus, the following changes to the system need to be made:

M :¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11g; ð12Þ

R :¼ fr1; r2; r3; r4; r5; r6; r7; r8; r9; r10g; ð13Þ

x10 := battery charger,

r10 := [electricity; uncharged batteries],

x11 := charged batteries,
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x11 = G(x10, r10),

r3 := [robot control system; x3; x11].

It follows that the directed-graph representation of this modified generation system is as indi-
cated in Figure 7.

This generation system is strongly regular, and is made up of two disjoint families corresponding
to the two disjoint subgraphs of Figure 7. Applying the SI algorithm to this generation system yields
an optimal seed for the system. To demonstrate the workings of the algorithm, we give a part of the
output. For this example, we let ∀y ∈ M, J( y) := 1, and ∀r ∈ R, K(r ) := the number of elements in
the ordered list of r.

The machine sets of Γxi , 1 ≤ i ≤ 11, are the following:

Mx1 = {x1, x2, x3, x4, x5, x6, x7, x8, x9},

Mx2 = {x4},

Mx3 = ;,
Mx4 = ;,
Mx5 = {x1, x2, x3, x4, x5, x6, x7, x8, x9},

Mx6 = {x9},

Mx7 = ;,
Mx8 = ;,
Mx9 = ;,
Mx10 = {x11},

Mx11 = ;.

We can select either x1 or x5. Since the sets of machines that can be generated are equal, x1 and x5
must be matriarchs for the same family.

Consider x1. Since x1 has entering edges in Figure 7, we define a new vertex x1′ and change these
edges so that they now enter x1′. The DMSTwith root at x1 yields Rx1min = {r1, r2, r3, r4, r5, r6, r7, r8, r9}.
Figure 7. Directed-graph representation of the modified Suthakorn-Kwon-Chirikjian semi-autonomous replicating sys-
tem, which is a strongly regular generation system. With the provided cost functions, the SI algorithm yields the intuitive
seed S = {x1, x10} ∪ {r1, r2, r3\[x3; x11], r4, r5, r6, r7\x4, r8\[x7; x8], r9\x9, r10}.
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The only choice made by the DMST algorithm is the selection of r9 over r4 in generating x1′, since the
former has lower cost. The LS subalgorithm applied to each simple path returns Sx1 = {x1}∪ Rx1min\M.
We obtain Jx1 = 35 − 6 = 29.

Similarly, for x5, we define a new vertex x5′ and change the edges that enter x5 so that they now
enter x5′. The DMST with root at x5 yields Rx5min = {r1, r2, r3, r4, r5, r6, r7, r8}. The DMST algorithm
does not select r9. The LS subalgorithm applied to each simple path returns Sx5 = {x5} ∪ Rx5min\M.
We obtain Jx5 = 38 − 5 = 33.

Of the two matriarchs, Sx1 is selected, since it has lower cost. Thus, the seed for the first family is

Sx1 ¼ fx1g ∪ fr1; r2; r3\½x3; x11�; r4; r5; r6; r7\x4; r8\½x7; x8�; r9\x9g: ð14Þ

Continuing the SI algorithm, we remove the machines that are in the generation subsystem of x5,
leaving us with M = {x10, x11}.

We now iterate through the algorithm, selecting x10, since it has the larger generation subsystem.
The DMST yields Rx10min = {r10}, and the LS subalgorithm gives us one possible seed. Thus, the
seed for the second family is

Sx10 ¼ fx10g ∪ fr10g: ð15Þ

Removing the machines in the generation subsystem of x10 leaves us with M = ;. Therefore, a seed
for the self-replicating system is

S ¼ fx1; x10g ∪ fr1; r2; r3\½x3; x11�; r4; r5; r6; r7\x4; r8\½x7; x8�; r9\x9; r10g: ð16Þ

We have thus arrived at a very intuitive result—the prototype robot and the battery charger can
initiate the semi-autonomous replicating system. Although the example is simple and confirms
intuition, the SI algorithm procedure is clearly illustrated as a consequence.

4.2 A Weakly Regular Self-Replicating System
The example in this section serves to illustrate the working of lines 5 through 19 of the SI algorithm.
To demonstrate the applicability to any self-reproducing system, not just robotic ones, we use the
naturally occurring atmospheric ozone cycle attacked by chlorine [24]. It is worth noting that intri-
cate generation systems similar to this example appear readily in nature, yet such a level of sophis-
tication has not been observed in human-designed self-reproducing systems so far.

The directed-graph representation of the naturally occurring atmospheric ozone cycle attacked by
chlorine is drawn in Figure 8, using the generation system model

M :¼ fx1; x2; x3; x4; x5g; ð17Þ
R :¼ fr1; r2; r3; r4; r5g; ð18Þ

where we define each of the constituent machines, resource ordered lists, and generation steps as follows:

x1 := O2, or oxygen molecules,

r1 := [ultraviolet radiation],

x2 := O, or excited oxygen atoms,

x2 = G(x1, r1),

r2 := [x1; neutral particle],
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x3 := O3, or ozone molecules,

x3 = G(x2, r2),

x4 := ClO + O2,

x5 := Cl + O2,

r3 := [x5] (although note that only Cl is required),

x4 = G(x3, r3),

r4 := [x2],

x5 = G(x4, r4),

r5 := [ ], an empty resource ordered list to remove Cl from x5,

x1 = G(x5, r5).

This self-replicating system is made up of a single family, as indicated by the connected graph of
Figure 8. The family is not strongly regular; for instance, starting with the machine x3, we would
need x5 before we had produced it. However, the family is weakly regular; no offspring machine is
contained in a resource ordered list used to generate that machine. We let ∀y ∈ M, J( y) := 1, and
∀r ∈ R, K(r ) := the number of elements in the ordered list of r.

Every machine in this generation cycle is a matriarch for the family, and so the LS subalgorithm
has to produce a linked list for the lineage of each machine. If we start with x1, then the LS sub-
algorithm yields the following list and machine seed set:

Lx1 ¼ ½x1; x2; x3; x5; x4�; ð19Þ

MSx1 ¼ fx1; x5g; ð20Þ

Jx1 ¼ 10 − 2 ¼ 8: ð21Þ

Similarly, starting with x2 yields

Lx2 ¼ ½x2; x1; x3; x5; x4�; ð22Þ

MSx2 ¼ fx2; x5; x1g; ð23Þ

Jx2 ¼ 10 − 1 ¼ 9: ð24Þ
Figure 8. Directed-graph representation of the atmospheric ozone cycle attacked by chlorine, which is a weakly regular
generation system. With the provided cost functions, the SI algorithm suggests the seed S = {x5} ∪ {r1, r2\x1}.
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Starting with x3 yields

Lx3 ¼ ½x3; x2; x5; x4; x1�; ð25Þ

MSx ¼ fx3; x5; x2g; ð26Þ

3

Jx3 ¼ 10 − 1 ¼ 9: ð27Þ

Starting with x4 yields

Lx4 ¼ ½x4; x2; x5; x1; x3�; ð28Þ
MSx4

¼ fx4; x2g; ð29Þ

Jx4 ¼ 10 − 2 ¼ 8: ð30Þ

Finally, starting with x5 yields

Lx5 ¼ ½x5; x1; x2; x3; x4�; ð31Þ
MSx5

¼ fx5g; ð32Þ

Jx5 ¼ 10 − 3 ¼ 7: ð33Þ

Hence, for the cycle in Figure 8, we select the seed where

MS ¼ fx5g ð34Þ

and

RS ¼ fr1; r2\x1g: ð35Þ

From an environmental standpoint, it is interesting to note how vital chlorine is to the cycle, so
that it always shows up in the machine seed set in one form or another.
5 Conclusions and Future Work

A novel algorithm to identify an optimal seed for a general class of generation systems has been
proposed. It utilizes the concepts of families and weak regularity to consider resource ordered lists
and their composition, deal with machines of deficient rank that are used in resource ordered
lists, isolate seed machines from generation cycles, and overcome the difficulty of seeding self-
reproducing systems where the generation of a copy of a machine depends on the assistance of
its offspring.

The avenues for future research include examining how one can control a generation system to
produce an optimal seed. Once issues of control have been resolved, the ideal of finding a seed
that can initiate an evolving self-reproducing system needs to be pursued. Modifying the algorithm
in this article to ensure that a seed is robust to the probabilistic selection of resources (i.e., the system
is still capable of self-replication and self-reproduction) is another possible extension of this work.
With the theory in place to analyze generation systems, the next step is to synthesize generation
systems.
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The SI algorithm needs to be extended to (1) allow for the determination, whenever possible, of a
seed of prespecified order rA; (2) incorporate some notion of the quantity of seed resources needed
to perpetuate a system; and (3) recognize and compensate for time constraints that may impose a
larger-size seed upon the system.
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Appendix: Proofs of Theorems
Theorem 1.

Proof. We start with the definition of a strongly regular generation system: Whenever y = G(x,
(rA)), where x and y are machines and (rA) is a sequence of A resource ordered lists, we have y ⊀
r for all ordered lists r that constitute the sequence (rA). Let x′ denote the machine that produces the
machine y using the resource ordered list rA, that is, y = G(x′, rA). Since y ⊀ r for all r constituting
(rA), we have y ⊀ rA. Thus, the definition of a weakly regular generation system is satisfied. □

Theorem 2.

Proof. Weak connectivity of the directed-graph representation of Γ = (U,M, R, G) follows directly
from the definition of a family. Indeed, since Γ is a family, for a particular (x, y) ∈ M × M, 9z ∈ M,
and (rn) and (rm) from R, such that x = G(z, (rn)) and y = G(z, (rm)). In the directed-graph repre-
sentation of Γ, there is a path from z to x through the sequence of edges constituting (rn), and a path
from z to y through the sequence of edges constituting (rm). Hence, in the undirected version of this
directed graph, there is a path from x to y via z. By the definition of weak connectivity, this means
that x and y are weakly connected in the directed graph. Since this is true for all vertex pairs in the
directed-graph representation of a family, the entire graph is weakly connected. □

Theorem 3.

Proof. The proof is by construction. Specifically, we outline an iterative algorithm that is guaranteed to
identify a matriarch for a family. At the end of every iteration, the algorithm produces a partition of the
family into a candidate matriarch, a set of descendants of that candidate matriarch, and a set of machines
yet to be considered. During each iteration, the size of the set of machines yet to be considered is
decreased by at least one unit, the size of the set of descendants of the candidate matriarch is increased
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by at least one unit, and the candidate matriarch itself may be updated. The algorithm terminates when
the set of machines to be considered is empty, at which time the candidate matriarch is confirmed as a
matriarch.

To initialize the algorithm, consider two arbitrary machines x and y of the family. Since x and y are in
the family, they have a common ancestor z. We consider three cases:

(1) If z = x, then the candidate matriarch is x, the set of descendants of the candidate matriarch
is the set of all machines obtained in the process of generating y from x (including y), and
the initialization is complete.

(2) If z = y, then the candidate matriarch is y, the set of descendants of the candidate matriarch
is the set of all machines obtained in the process of generating x from y (including x), and
the initialization is complete.

(3) If z is neither x nor y, then the candidate matriarch is z, the set of descendants of the candidate
is the set of all machines obtained in the process of generating both x and y from z (including x
and y), and the initialization is complete.

Once the algorithm is initialized, each iteration proceeds as follows. Let x be the candidate
matriarch, and consider an arbitrary machine y in the set of machines yet to be considered. Since
x and y are in the family, they have a common ancestor z. We consider four cases:

(1) If z = x, then the candidate matriarch remains x, and all the machines obtained in the process of
generating y from x (including y) are transferred into the set of descendants of the candidate
matriarch and removed from the set of machines yet to be considered. This completes the
iteration.

(2) If z = y, then the candidate matriarch becomes y, and all the machines obtained in the process
of generating x from y (including x) are transferred into the set of descendants of the candidate
matriarch and removed from the set of machines yet to be considered. This completes the
iteration.

(3) If z is neither x nor y but is in the set of descendants of the candidate matriarch, then the
candidate matriarch remains x, and all the machines obtained in the process of generating y
from z (including y) are transferred into the set of descendants of the candidate matriarch
and removed from the set of machines yet to be considered. This completes the iteration.

(4) If z is neither x nor y but is in the set of machines yet to be considered, then the candidate
matriarch becomes z, and all the machines obtained in the process of generating both x and
y from z (including x and y) are transferred into the set of descendants of the candidate
matriarch and removed from the set of machines yet to be considered. This completes
the iteration.
□
Theorem 4.

Proof. This proof follows directly from the definition of a seed. First, we are given that there exists
an r constituting (rm) such that y ≺ r. Since ∀1 ≤ i ≤ m, xi+1 = G(x1, (ri)), a seed for the weakly
regular subfamily (U, X, Z, G|X ×Z), where X is the set of machines of (xm+1) and Z is the set of
resource ordered lists of (rm), is

S ¼ fx1g ∪ Z

¼ fx1; yg ∪ Z\f yg:
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Since m is the smallest natural number for which assumptions (1)–(3) hold, m is the first location at
which weak regularity occurs in the single lineage. Hence, the lineage is strongly regular at positions
prior to m. It follows that we can replace Z\f yg with Z\Mx1 so that the resource seed set is devoid
of machines, and this replacement does not affect the validity of S as a seed.

If RS ∩ MS = ;, then we need to have |MS| ≥ 1 by Definition 6, so that at least one machine is
present to generate the system. We are given that x1 can produce every machine in (xm+1) using (rm).
From the seed set S above, (rm) has a resource that contains y, and y is in the lineage of x1 through
(rm), but y cannot be generated by x1. Therefore, the system needs to be started with both x1 and y.
Thus, |MS| = 2, the minimum possible. □
Theorem 5.

Proof. This proof uses mathematical induction. We assume that we are given a lineage of a matriarch,
x1, through (rn). Let Mx1 be the set of all descendants of x1, and {(rn)} be the set of resource ordered
lists in the lineage of x1. Let RS = {(rn)}\Mx1, and MS = {x1}. Let r be the first resource ordered list
in this lineage, and s be the second. Let y := G(G(x1, r ), s), different from G(x1, r ).

Consider G(x1, r ). If y≺ r, the subalgorithm takesMS ←MS ∪ { y}, and by Theorem 4, the newMS

forms a seed for the path when unioned with RS. Otherwise, the originalMS is still a seed when unioned
with RS, because y is not required.

For the induction hypothesis, assume that MS forms a seed with RS when x1 uses a sequence of
resource ordered lists, (rk−1). Let y := G(G(x1, (rk−1)), rk), different from G(x1, (rk−1)).

Consider G(x1, (rk−1)). If y is contained in a resource ordered list of (rk−1), the subalgorithm takes
MS ← MS ∪ { y}, and by Theorem 4, the new MS forms a seed for the path when unioned with RS.
Otherwise, the original MS is still a seed when unioned with RS, because y is not required. □
Theorem 6.

Proof. We have to first prove that the output set S is a seed for the initial self-reproducing system.
Since Γ is a union of families, and S = ∪ Sx for x belonging to the set of matriarchs M♀, it suffices
to prove that each Sx is a seed for one of the constituent families. Thus, we will show that each of
the intermediate steps is correct.

By assumption, the generation system to be seeded is made up of one or more weakly regular
families. The directed-graph representation of a single family is weakly connected. Thus, the directed-
graph representation of the initial generation system is made up of one or more weakly connected
components.

Each vertex in the directed-graph representation belongs to a weakly connected component.
Both the BFS and the DFS algorithm are able to correctly find the vertices reachable from a root
in a weakly connected directed graph [12]. Thus, the use of either of these algorithms ensures that
this step is correct.

The SI algorithm considers a finite number of sets, each with finite cardinality. There are sev-
eral known algorithms that are able to correctly count the elements in a set and sort the sets in
descending order. The use of any of these algorithms results in the selection process being correct.

To find the directed minimum spanning tree for the selected weakly connected component re-
quires use of the Chu-Liu-Edmonds algorithm, or Tarjanʼs efficient implementation of the same.
These algorithms have been proved to be correct [11, 14, 44]. We have shown by Theorem 5 that
the LS subalgorithm is correct for any path in the tree. Since the union of seed sets is itself a seed set,
Sx = ∪ Spath is a valid seed. Just as in the previous step, there are known algorithms for correctly
evaluating the sum of a functional on the elements of a set, sorting these sums, and picking the set
with the minimum sum. The use of any of these algorithms results in the selection process being
correct.
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Therefore, Sx is a seed for all Γx.
We now demonstrate optimality.
Let Γ = (U, M, R, G) be made up of k weakly regular disjoint families. By assumption, all the

machines in the given generation system need to be produced. Hence, the optimal seed for each
family must include the least costly resource ordered lists such that all machines in the family are
generated. This implies that there must exist a path between the root vertex and all other vertices
in the directed-graph representation of the subsystem of a matriarch. To allow for the cost of a ma-
chine that utilizes a resource ordered list, this cost is included in the resource ordered list cost in the
directed-graph representation. The DMST that is obtained via the Chu-Liu-Edmonds algorithm finds
a path between the root vertex and all other vertices with minimal cost. We have shown that each pass
through the SI algorithm produces a seed for a family, before the family is removed from the original
generation system. The seed set chosen for the family is the set with the lowest total cost of machines
and resource ordered lists, and is selected from all the possible matriarch seed sets for that family. If
there are k disjoint families in the original system, the SI algorithm will iterate k times before returning
a seed that is the union of the seed sets for each family. Taking all such minimal-cost seeds produces
an optimal seed set for each family, and since the families are disjoint, the union of these sets results in
a seed for the original generation system that is optimal with respect to cost. □

Theorem 7.

Proof. We have to show that if a seed exists, the algorithm in this article will output one possible
seed. Consider that a seed for a generation system always exists—namely, the trivial seed, consisting
of all the machines and resource ordered lists in the generation system, that is, S = M ∪ R. Indeed,
the algorithm presumes this seed at the start, before removing redundant resource ordered lists and
machines that belong to a matriarchʼs subsystem. Theorem 6 shows that the output of the algorithm
is a seed.

Thus, completeness is guaranteed. □

Theorem 8.

Proof. The LS subalgorithm is convergent because no cycles exist in the DMST and there are a
finite number of paths of finite length that begin at the root of the tree. Each iteration of the SI
algorithm removes elements from a set with finite cardinality, and this algorithm stops once the set is
depleted.

We now consider the time complexity of operation during the first iteration of the algorithm. Let
|M| = n and |R| = m.

The use of either one of the BFS or DFS algorithms has time complexity O(n + m) [12].
The fact that each machine has to be visited in order to determine the cardinality of the machine

set of its generation subsystem results in a time complexity of O(n).
The time complexity of the DMST algorithm is O(npmp) [15], where np is the number of machines

in the primary subsystem, and mp is the number of resource ordered lists in the primary subsystem.
The use of the DFS algorithm to identify the simple paths in the DMST has time complexity O(n +
m). The LS subalgorithm visits all the machines in a simple path once, and this is repeated for a finite
number of simple paths. The fact that (in the worst case) all primary subsystem resource ordered
lists have to be visited to remove any contained machines results in a time complexity of O(mp).
Allowing for the possibility that there is more than one matriarch to apply the DMST algorithm
to, this entire step could be repeated n♀ times, where n♀ is the number of matriarchs. Thus, this
step has polynomial time complexity.

All primary subsystem machines have to be removed from the original machine set, so that the
time complexity of this step is O(np).

Thus, the overall time complexity during the first iteration of the algorithm is of polynomial order
in n and m. □
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